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Deflections in magnet fringe fields
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A transverse multipole expansion is derived, including the longitudinal components necessarily present in
regions of varying magnetic field profile. It can be used for exact numerical orbit following through the
fringe-field regions of magnets whose end designs introduce no extraneous components, i.e., fields not required
to be present by Maxwell’s equations. Analytic evaluations of the deflections are obtained in various approxi-
mations. Mainly emphasized is a ‘‘straight-line approximation,’’ in which particle orbits are treated as straight
lines through the fringe-field regions. This approximation leads to a readily-evaluated figure of merit, the ratio
of rms end deflection to nominal body deflection, that can be used to determine whether or not a fringe field
can be neglected. Deflections in ‘‘critical’’ cases~e.g., near intersection regions! are analyzed in the same
approximation.
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I. STRATEGY AND NOTATION

The purpose of this paper is to derive formulas for t
orbit deflections caused by the fringe fields of nonsoleno
accelerator magnets. The main ingredient is a multipole
pansion for fields having arbitrary longitudinal profile an
including all field components~and only those! required to
be present by Maxwell’s equations.

Because terminology describing magnets depends on
text, we define some of our terms, if only implicitly, by usin
them in this section. Most magnets in accelerators are
poles,’’ ‘‘quadrupoles’’ or other ‘‘multipoles’’ where we dis
tinguish by quotation marks the common names of th
magnets from the dipole, quadrupole, multipole, etc., ter
appearing in mathematical expansions of their magn
fields. The particle orbits areparaxial, with small transverse
displacements r 5(x21y2)1/2, with slopes (x8,y8)
[(dx/dz,dy/dz) small compared to one because the orb
are more or less parallel to thez axis, which is the magne
centerline. The dominant magnetic field compone
(Bx ,By) are therefore,transverseto this axis, and the cur
rents in most accelerator magnets are therefore,longitudinal.
But actual magnet coils must have radial leads to return
currents and, because of practical considerations, they
have azimuthal currents.

The standard multipole expansion derives entirely fr
longitudinal magnet currents~this includes the bound cur
rents in ferromagnets!. It is only for a long magnet whose
lengthL is large~for example, compared to a typical radi
magnetic half-aperturer 1/2) that a single multipole term pro
vides a good approximation to the field. Yet, as concerns
effect of the magnet on a particle orbit, a common ideali
tion is theshort magnetor thin lensapproximation, in which
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the entire deflection caused by the magnet occurs at a si
longitudinal position. Even more extreme than our straig
line approximation is to treat the transverse orbit coordina
(x,y) as constant through the entire magnet, body, and e
the deflection~say horizontal! is proportional to afield inte-
gral of the form Dx8(x,y);*2`

` B(x,y,z)dz, where
B(x,y,z) stands for any one ofBx ,By ,dBx /dx,dBx /
dy, . . . , that is, either of the transverse magnetic field co
ponents, or any of their derivatives with respect tox and/ory.
Commonly then, one defines aneffective magnet length Leff

'L such that*2`
` B(0,0,z)dz5B(0,0,0)Leff . This length is

specific to the particular multipole, the magnet is designed
produce. In spite of the facts that the magnet must be lon
validate the multipole approximation, yet short to valida
the thin element treatment, and that discontinuous magn
fields violate the Maxwell’s equations, this approximation
curiously accurate for most accelerator magnets. Becaus
this good start, it promises to be effective to improve up
the approximation by assuming that magnets have ideal m
tipole fields within the lengthLeff , but also to include ‘‘end
fields’’ applicable in regions of lengthDL2 andDL1 at in-
put and output ends. In this approximation, the transve
magnetic fields are continuous, but their derivatives are
continuous at both ends of the fringe-field regions.

In a well-designed magnet, the same multipole that
dominant in the central region is dominant in the end
gions. But the fields in the end regions are necessarily m
complicated and include longitudinal componentsBz(x,y,z).
Since the fields in these regions are, in principle, constrai
only by Maxwell’s equations, rigorous formulas for the d
flections they cause can only be evaluated by solving dif
ential equations appropriate for the detailed magnet end c
figuration. To obtain analytic formulas, we must make so
assumptions, the first of which is that the formulation is n
intended to apply to ‘‘intentional solenoids’’~because of their
large azimuthal currents and longitudinal field componen!.
Furthermore, the only longitudinal fields included are tho
that are required by Maxwell’s equations to be present in
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gions of varying longitudinal profile. In other words, the fo
mulas can be expected to be accurate for ‘‘well-design
magnets, in which the dominant fringe-field multipolari
matches the body multipolarity. This can, in principle,
assured by proper shaping of pole ends and proper con
mation of the magnet return currents. In the absence of m
netic field measurements in the end regions, this is the o
practical assumption one can make when predicting
fringe-field deflections. If the fieldshave been accurately
measured or calculated, to improve on formulas given in
paper, it would be necessary to separate out the~presumably
small! extraneous components and include their effects p
turbatively. One cannot exclude the possibility of end geo
etries that introduce multipoles for which the extraneo
fringe fields are large compared to the required fringe fie
either intentionally or unintentionally. The present formalis
would not be directly applicable for such fields.

In this paper, we derive first approximations for the d
flections occurring in the end field regions, of the for
Dx28 ;*2DL2

0 B(x,y,z)dz and Dx18 ;*L
L1DL1B(x,y,z)dz

@1#. Like the thin lens approximation, these formulas assu
the transverse orbit displacement is constant through the
intervalsDL2 andDL2 . This is a much more valid assump
tion than assuming constant displacement through the w
magnet if, as is usually true, the end regions are ‘‘shor
DL6!L. Furthermore, terms proportional to transver
slopesx8 andy8 can be consistently included in the formul
for the deflections.

A criterion for the validity of treating the end region a
short can be based on the inequalityubx,y8 uDL6 /bx,y!1,
wherebx,y andbx,y8 are the usualb functions and their de-
rivatives with respect to the longitudinal positionz. When
this is true, the~fractional! rate of change of multipole
strength 1/DL6 is large compared to the~fractional! rate of
change of latticeb functions.

There is often a tendency to believe that multipole con
butions from opposite ends of a magnet cancel each o
But, since this is not universally valid, in this paper no su
assumption will be made.

II. THREE-DIMENSIONAL MULTIPOLE EXPANSION

In this section, a multipole expansion is developed tha
appropriate for performing the calculation just describ
This expansion is applicable to magnetic fields that dep
arbitrarily on the longitudinal coordinatez but, being a
power series in the transverse coordinatesx andy, its accu-
racy after truncation to an ordern deteriorates at large trans
verse amplitudes. The expansion is intended to describ
arbitrary multipole magnet along with its fringe field. Th
formalism presented here generalizes an approach, desc
by Steffen and reduces to formulas he gives in the cas
dipoles and quadrupoles@2#.

In the current-free regions, to which the beams are
stricted, the magnetostatic fieldB(x,y,z) can be expressed a
the gradient of a scalar potentialF(x,y,z):

B~x,y,z!5“F~x,y,z!5
]F

]x
x1

]F

]y
y1

]F

]z
z, ~1!
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whereF satisfies

¹2F~x,y,z!5
]2F

]x2
1

]2F

]y2
1

]2F

]z2
50. ~2!

An appropriate expansion is

F~x,y,z!5 (
m50

`

(
n50

`

Cm,n~z!
xnym

n!m!
, ~3!

where the coefficientsCm,n(z) depend on the longitudina
positionz @3#.

Substituting Eq.~3! into Eq. ~2!, we get a recursion rela
tion for the coefficients,

Cm12,n52Cm,n122C m,n
[2] , ~4!

where in this and in subsequent formulas, a superscrip@l#
denotesl differentiations with respect toz; in this casel
52. Now, we can evaluate the gradient of the potential a
get the field components in the three Cartesian direction

Bx~x,y,z!5 (
m50

`

(
n50

`

Cm,n11~z!
xnym

n!m!
,

By~x,y,z!5 (
m50

`

(
n50

`

Cm11,n~z!
xnym

n!m!
,

Bz~x,y,z!5 (
m50

`

(
n50

`

C m,n
[1] ~z!

xnym

n!m!
. ~5!

The two-index coefficientsCm,n can be expressed in terms o
the usual normal and skew multipole coefficients which,
well as being conventional, have only one index,

bn~z!5C1,n~z!5S ]nBy

]xn D U
x5y50

~z!,

an~z!5C0,n11~z!5S ]nBx

]xn D U
x5y50

~z!. ~6!

We next seek a representation of the field as a function
these coefficients and their derivatives. The relation~4! can
be applied recursively to obtain

Cm,n5(
l 50

k

~21!kS k

l D C m22k,n12k22l
[2 l ] , ~7!

where the upper limit of the seriesk is equal to the integer
part of m/2. This shows that the coefficientsCm,n can be
expressed as a series of even derivatives ofC0,n11 or C1,n .
Using Eq.~6!, we can distinguish two cases form, namely,
m52k ~even! or m52k11 ~odd!, and we have

C0,050, C2k,n5(
l 50

k

~21!kS k

l D an12k22l 21
[2 l ] for n.0,
2-2
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C2k11,n5(
l 50

k

~21!kS k

l D bn12k22l
[2 l ] . ~8!

The requirementC0,050 corresponds to the restriction t
nonsolenoidal magnets.

Substituting this representation into Eqs.~5! and rearrang-
ing them-summation yields

Bx~x,y,z!5 (
n50

`

(
m50

`

(
l 50

m

~21!m

3S m

l D xny2m

n! ~2m!! S bn12m1122l
[2 l ] y

2m11

1an12m22l
[2 l ] D ,

By~x,y,z!5 (
n50

`

(
m50

`

~21!m
xny2m

n! ~2m!! F(l 50

m S m

l D bn12m22l
[2 l ]

2 (
l 50

m11 S m11

l D an12m1122l
[2 l ] y

2m11G ,

Bz~x,y,z!5 (
n50

`

(
m50

`

(
l 50

m

~21!m

3S m

l D xny2m

n! ~2m!! S bn12m22l
[2 l 11] y

2m11

1an12m2122l
[2 l 11] D , ~9!

again limiting the ranges so the lowest coefficients areb0
[C1,0 anda0[C0,1.

In an idealized model of a magnet, only one~or in the
case of combined function magnets, two! of the multipole
coefficients will be nonvanishing in the body of the magn
~length Leff) and in this region only thel 50 terms in the
expansions survive. The important terms are (m50,l 50)
corresponding to the leading ‘‘design’’ multipole; (m50,l
51), the ‘‘next-to-leading’’ term associated with longitud
nal variation of the design multipole; and (m51,l 50) com-
ing from the next higher body multipole. Examples in th
paper are mainly concerned with the relative importance
the first two of these terms in the deflections caused by
actual magnet, including body and ends. The same form
could, however, be used to evaluate the relative importa
of the second and third terms—to answer the ques
‘‘Which are more important, fringe-fields or body field im
perfection?’’

To obtain results concerning the symmetries of the sk
and normal multipole coefficients, it is more useful to e
press these formulas in terms of cylindrical coordinates. T
is done in Appendix A.

In the fringe regions of the magnet, the fields can be
ranged so that they match the central fields at the ends o
body region and fall linearly to zero in the fringe region
04650
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For example, let us keep just one more term as a ‘‘n
approximation,’’ arrange its leading (l 50) part to match a
given body field atz50, and let it vary linearly withz;

Bx~x,y,z!' (
n51

`

(
m50

`
xn21y2m11

~n21!! ~2m11!!
~21!m@bn12m

[0]

1bn12m
[1] z#,

By~x,y,z!' (
n50

`

(
m50

`
xny2m

n! ~2m!!
~21!m@bn12m

[0] 1bn12m
[1] z#,

Bz~x,y,z!' (
n50

`

(
m50

`
xny2m11

n! ~2m11!!
~21!mbn12m

[1] ,

~10!

where then index has been shifted by 1 in theBx expansion
for convenience in the next step. Next, we arrange
Bx(x,y,DL)50 by setting

bn12m
[1] 52

bn12m
[0]

DL
. ~11!

It can be seen that this condition also assuresBy(x,y,DL)
50. This is a consequence of the requirement that“3B
50. SettingB(x,y,z)50 for z>DL, we have assured tha
the transverse field components are continuous. Due to
artificial assumption of linear fall off of the field in the fring
region, the longitudinal componentBz is discontinuous in
this approximation.

At this point, the multipole magnet has been idealized
a model whose parameters, apart from its multipolarity
dex, are its multipole strengthbn12m

[0] , and its lengthsLeff and
DL6 . This representation is appropriate for representing
magnet within a particle tracking computer program. T
lengthsDL6 could be determined by best fitting to measur
fringe fields. But, to reduce the number of parameters in
remainder of this paper, and with some reduction in ac
racy, a slightly different approach will be taken; the impuls
delivered by the fringe fields will be evaluated in a way th
is independent of the fringe field lengths: all the integr
involved will be computed by using the ‘‘hard-edge’’ ap
proximation, i.e., taking the limit for whichDL6→0. In this
limit the straight line approximation becomes exact.

For the sake of consistency, another point must also
made. Since the dominant multipole in the magnet body
also dominant in the fringe field, there can be an apprecia
contribution to the dominant field integral~due to the magne
as a whole! that comes from the fields in the fringe region
It is a matter of taste whether this contribution is to
treated as part of the main field or part of the fringe field.
this paper, from here on, to simplify the formulas somewh
the term ‘‘fringe field’’ will refer to components other tha
the dominant component, but restricted to those compon
necessarily associated with the dominant multipole. In ot
words, the contributions from the dominant multipole com
ponent in the fringe regions will be counted as part of t
ideal magnet field integral. Treating the magnet in this w
2-3
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PAPAPHILIPPOU, WEI, AND TALMAN PHYSICAL REVIEW E67, 046502 ~2003!
increases its effective length, probably making it more nea
equal to the the physical magnet length; i.e.,L'Leff , and
this will be assumed in all subsequent formulas.

III. DEFLECTIONS AT MAGNET ENDS

For a given magnet with a perfect 2(n11)-pole geom-
etry, written in cylindrical coordinates~see Appendix A!, the
scalar potential satisfies the following symmetry conditio

F~r ,u,z!5FS r ,
p

n11
2u,zD , ~12!

which leads to a relation between the harmonic multip
number allowed by symmetryn8 and the multipole order
(n11):

n85~2 j 11!~n11!21. ~13!

Thus, for a normal dipole (n50), the multipole coefficients
allowed by the magnet symmetry are of the formb2 j , for a
normal quadrupole (n51) b4 j 11, for a normal sextupole
(n52) b6 j 12, etc. Consider now a multipole magnet, wi
normal symmetry, for example. Following the symme
condition ~13!, we can rewrite the field components~A7!,
keeping terms of the expansion to leading order:

Bx~x,y,z!5ImH ~x1 iy !nbn~z!

n!

2
~x1 iy !n11@~n13!x2 i ~n11!y#bn

[2]~z!

4~n12!!

1O~n14!J ,

By~x,y,z!5ReH ~x1 iy !nbn~z!

n!

2
~x1 iy !n11@~n11!x2 i ~n13!y#bn

[2]~z!

4~n12!!

1O~n14!J ,

Bz~x,y,z!5ImH ~x1 iy !n11bn
[1]~z!

~n11!!
1O~n13!J , ~14!

where the functionsO( j ) represent polynomial terms in th
transverse variablesx and y of order greater or equal toj.
These expressions apply forn.0. The special case of th
dipole will be treated separately. Here the terms proportio
to bn

[1] and bn
[2] , approximate the fields present due to t

longitudinal field profile variation and do not include field
that could be present due to nonideal magnet design.

For a particle traversing the magnet along the straight
having transverse coordinates (x,y), the impulse ~i.e.,
change of transverse momentum! imparted by the nomina
field component is
04650
ly

e
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e

Dpx
b52eE

body
By~x,y,z!dz'2ebnLeff

Re$~x1 iy !n%

n!
,

Dpy
b5eE

body
Bx~x,y,z!dz'ebnLeff

Im$~x1 iy !n%

n!
,

~15!

where Leff5*bodybn(z)dz/bn is the effective length of the
magnet andbn is the nominal field coefficient in the body o
the multipole magnet. The quantities in Eq.~15!, the inten-
tional and dominant~‘‘zero order’’! deflections caused by th
magnet, are only approximate, since they account neithe
orbit curvature within the body of the magnet nor for e
field deflections. Expressions like this will be used only
‘‘normalizing denominators’’ in ratios having~the presum-
ably much smaller! magnet end deflections as numerato
For magnets other than bending magnets, for which the
erage deflection is zero, it will be necessary to use rms va
for both the normalizing denominator and the numerator.

The impulse due to the fringe field at one end of a mag
is defined in this paper as the effect of field deviation fro
nominal, from well inside~where the nominal multipole co
efficient is assumed to be independent ofz) to well outside
the magnet~where all field components are assumed to v
ish!. These will be the limits for the integrals used in order
calculate the fringe deflection. To obtain explicit formula
the upper limit of these integrals will be taken to be infinit
Exploiting the assumed constancy ofx andy along the orbit,
these integrals will all be evaluated using integration
parts.

Suppressing the entire pure multipole contribution, as
plained above, we have*2`

` B(x,y,z)dz'0. For x5y50,
this is an equalityby definition, and for finite displacements
it is approximately true if, as we are assuming, the transve
particle displacements remain approximately constant. T
is consistent with our straight-line orbit approximation.

The individual components of the impulse can themsel
be separated into terms due to longitudinal fields~labeledi)
and due to transverse fields~labeled')

Dpx,y
f 5Dpx,y

f ~ i !1Dpx,y
f ~' !, ~16!

where

Dpx
f ~ i !5eE

fringe
y8Bz~x,y,z!dz,

Dpy
f ~ i !52eE

fringe
x8Bz~x,y,z!dz ~17!

are the momentum increments of the particle caused by
longitudinal component of the magnetic field, and

Dpx
f ~' !52eE

fringe
By~x,y,z!dz,

Dpy
f ~' !5eE

fringe
Bx~x,y,z!dz, ~18!
2-4
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DEFLECTIONS IN MAGNET FRINGE FIELDS PHYSICAL REVIEW E67, 046502 ~2003!
are the momentum increments of the particle caused by
transverse components of the magnetic field. Using the le
ing order expressions of the magnetic field, we obtain
relations

Dpx
f ~ i !'

ebn

~n11!!
Im$~x1 iy !n11%y8,

Dpy
f ~ i !'2

ebn

~n11!!
Im$~x1 iy !n11%x8, ~19!

and

Dpx
f ~' !'

2ebn

4~n11!!
Re$~x1 iy !n@~n11!xx81~n13!yy8

1 i ~n21!xy82 i ~n11!yx8#%,

Dpy
f ~' !'

ebn

4~n11!!
Im$~x1 iy !n@~n13!xx81~n11!yy8

1 i ~n11!xy82 i ~n21!yx8#%. ~20!

The total impulses caused by the fringe field are, the
fore,

Dpx
f '2

ebn

4~n11!!
Re$~x1 iy !n@~n11!~x2 iy !~x81 iy8!

12iy8~x1 iy !#%,

Dpy
f '

ebn

4~n11!!
Im$~x1 iy !n@~n11!~x2 iy !~x81 iy8!

22x8~x1 iy !#%. ~21!

Even though they occur at a fixed point in the lattic
because these impulses depend on slopesx8 andy8 and are
truncated Taylor series, they are not symplectic. To use th
in long term, damping-free tracking, symplecticity wou
have to be restored by including deviations in transverse
ordinates@4,6–8#.

IV. APPLICATION EXAMPLES

The formulas just derived are appropriate to calculate
end field deflection of any single particle. But to assess
importance of these deflections, it is appropriate to calcu
their impact on the beam as a whole, for example,
calculating an rms deflection, such as (Dp'

f ) rms

5A^(Dpx
f )2&1^(Dpy

f )2&. Here the operator̂•& denotes an
averaging over angle variables. Note that here, and from
on, the subscript' specifies the transverse impulse, and do
not refer to a magnetic-field component. Formulas for r
values like these are derived in Appendix B. This sect
contains examples of the use of those formulas, starting w
the cases of flat and round beams, then specializing the
sults further for dipole and quadrupole magnets. The deri
formulas are finally applied for evaluating the impact
magnets end fields in the case of the Large Hadron Coll
04650
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~LHC! and the Spallation Neutron Source~SNS! accumula-
tor ring. The calculations are based on Eq.~B13!.

A. Flat beam

For a flat beam, one of the transverse degrees of free
~e.g., the verticaly,y8) vanishes. Thus, the total transver
rms momentum increment from the magnet body is

~Dp'
b !rms[A^~Dpx

b!2&'
ebnLeff

2nn!
AS 2n

n Dbne'
n , ~22!

wherebn represents the average of thebn in the body of the
magnet ande' is the transverse emittance. The total tran
verse rms momentum increment from one of the fringes
the magnet is

~Dp'
f !rms[A^~Dpx

f !2&

'
ebn

2n13n!
AS 2n12

n11 D bn@11~2n13!a2#

2~n12!
e'

n12,

~23!

whereb anda represent the beta and alpha functions, at
fringe location. The ratio of these quantities is

~Dp'
f !rms

~Dp'
b !rms

'
e'

8Leff
A~2n11!bn@11~2n13!a2#

~n11!~n12!bn
.

~24!

Assuming that theb functions are not varying rapidly, if the
magnets are in noncritical locations~which is to say most
magnets!, the square root dependence can be neglected, s
order-of-magnitude estimate~dropping ann-dependent nu-
merical factor not very different from 1! is given by

~Dp'
f !rms

~Dp'
b !rms

'
e'

Leff
. ~25!

The case in which fringe-field deflections are likely to
most important, is whena is anomalously large, for ex
ample, in the vicinity of beam waists such as at the locat
of intersection points in colliding beam lattices. In this ca
~again dropping a numerical factor! the ratio of deflections is
roughly

~Dp'
f !rms

~Dp'
b !rms

'a
e'

Leff
. ~26!

The same result is obtained by settingbx@by in Eqs.~B13!.
Often the relative deflection is so small as to make neg

of the fringe-field deflection entirely persuasive. The simpl
ity of the formula is due to the fact that the fringe contrib
tion is expressed as a fraction of the dominant contributi
Note that, as stated before, this formula applies to each
separately, and does not depend on any cancellation of
contributions from two ends. In fact, nonlinear analys
2-5
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shows that in magnets fringe-field contributions can tend
add up instead of cancelling@4#.

B. Round beam

For a round beam, the two transverse emittances are e
ex5ey5e' . For simplicity, we assume that typical values
horizontal and vertical lattice functions are approximat
equal; bx'by5b and ax'ay5a. Also assume thatbn

'b̄n, i.e., theb functions do not vary significantly in the
body of the magnet. Taking into account the previous
potheses, the total transverse rms momentum incremen
the body becomes

~Dp'
b !rms'

ebnLeff

2n/2n!
b̄n/2e'

n/2F 3F2~1/2,2n,2n;1,1/2

2n;1!
~2n21!!!

n! G1/2

, ~27!

where the function in the square root represents the gen
of

lt

s
.
t

04650
o

ual

-
for

al-

ized hypergeometric function~see Ref.@5# for details!. Ap-
plying the same simplifications, the rms momentum ki
given by the fringe field is

~Dp'
f !rms'

ebnbn/2e'
n/211

2n13~n11!!
F(

l 50

n S 2~n2 l !

n2 l D S 2l

l D gn,l~a2!G1/2

,

~28!

where we consideredbx'by5b and the same for thea
functions. Notice now that the sum of the coefficientsgn,l
5gn,l ,01gn,l ,11gn,l ,2 depends only ona2. The series in-
volving them can be also written as a sum of a few gene
ized hypergeometric functions. The ratio of the rms mom
tum transverse kicks is

~Dp'
f !rms

~Dp'
b !rms

'
e'

Leff

bn/2

b̄n/2
Cn~a2!, ~29!

where the coefficientCn is
Cn~a2!5
1

8~n11!
F n!(

l 50

n S 2~n2 l !

n2 l D S 2l

l D gn,l~a2!

3F2~1/2,2n,2n;1,1/22n;1!~2n21!!!
G 1/2

. ~30!
of

ual
Let us consider two cases, as before: one wherea is small
and one wherea is large, as near the interaction points
large colliders. For the first case (a small!, we may neglect
the terms havinga as a factor in the coefficientgn,l and in
the second case, we can pull outa from the square root and
neglect terms in the coefficientgn,l having now thea func-
tion in the denominator. In this way, the coefficientsCn of
Eq. ~30! will depend only on the ordern. We plot in Figs. 1,
the behavior of these coefficients as a function of the mu
pole ordern, for large and smalla. The dominant factor in
Cn seems to be 1/(n11), which is reflected in the slow
asymptotic decay depicted at the plots. For all practical ca
~multipole orders up to 20!, Cn lies between 1/2 and 1/10
Assuming now that the averageb in the body of the magne
is not so different fromb in the fringe, one gets for smalla
functions

~Dp'
f !rms

~Dp'
b !rms

'
e'

Leff
, ~31!

as in Eq.~25!, and fora large

~Dp'
f !rms

~Dp'
b !rms

'a
e'

Leff
, ~32!

as in Eq.~26!.
i-

es

C. Dipole magnet

Consider a ‘‘straight’’ dipole magnet; the configuration
poles and coils is symmetric about thex50 andy50 planes,
and the coils are excited with alternating signs and eq
strength. By symmetry,Bx is odd in bothx andy, By is even
in both x andy, andBz is even inx and odd iny. Using the
general field expansion of Eq.~9!, we get

Bx5 (
m,n50

`

(
l 50

m
~21!mx2n11y2m11

~2n11!! ~2m11!! S m

l D b2n12m1222l
[2 l ] ,

By5 (
m,n50

`

(
l 50

m
~21!mx2ny2m

~2n!! ~2m!! S m

l D b2n12m22l
[2 l ] ,

Bz5 (
m,n50

`

(
l 50

m
~21!mx2ny2m11

~2n!! ~2m11!! S m

l D b2n12m22l
[2 l 11] . ~33!

Taking the field expansion up to leading order, we get

Bx5b2xy1O~4!,

By5b02
1

2
b0

[2]y21
1

2
b2~x22y2!1O~4!,

Bz5yb0
[1]1O~3!, ~34!
2-6
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whereb2 represents a sextupole field component allowed
the symmetry of the dipole magnet~for an ideally designed
magnetb250) andO(3) and O(4) contain all the allowed
terms of higher orders.

A point has to be made about the application of the in
grals evaluating the rms momentum kicks for bending m
nets: because of the curved central orbit, these integrals
not exact, as previously mentioned. Nevertheless, in m
practical cases, the field uniformity in the interior of a dipo
magnet is very high, and thus, on heuristic grounds,
approach can be expected to provide fairly good estim
even in this case.

The change of transverse momentum imparted by the
pole field is@see Eq.~15!#

Dpb52eE
body

b0dz'2eb0Leff , ~35!

where as beforeLeff5*bodyb0dz/b0 is the effective length of
the dipole magnet, andb0 is the main dipole field in the body
of the dipole magnet. Using Eq.~18!, the deflections in one
fringe are

Dpx
f '2eb0yy8, Dpy

f '2eb0yx8, ~36!

and the total rms fringe kick is

~Dp'
f !rms5eb0A4^y2y82&1^y2x82&. ~37!

Using Eqs.~B10! and ~B11!, we have

FIG. 1. Order dependent coefficient of the momentum increm
ratio, for a round beam@see Eq.~30!#, when thea function is small
~top! and when thea function is large~bottom!.
04650
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^y2y82&5
~113ay

2!ey
2

8
,

^y2x82&5^y2&^x82&5
~11ax

2!byexey

4bx
, ~38!

and the rms transverse momentum kick becomes

~Dp'
f !rms5eb0A~113ay

2!ey
2

8
1

~11ax
2!byexey

4bx
,

~39!

Thus, the by-now-standard ratio is

~Dp'
f !rms

~Dp'
b !rms

'
1

Leff
A~113ay

2!ey
2

8
1

~11ax
2!byexey

4bx
.

~40!

Except for numerical factors near one, this formula yields
same ‘‘ball-park’’ estimates as given by Eqs.~31! and ~32!
for the smalla and largea cases.

D. Quadrupole magnet

The configuration of poles and coils in a quadrupole m
net is symmetric about the four planesx50, y50, x5y,
x52y; and if the coils are excited with alternating signs a
equal strength, the magnetic field will satisfy the followin
symmetry conditions:Bx is even inx and odd iny; By is odd
in x and even iny; Bz is odd in both x and y; and
Bz(x,y,z)5Bz(y,x,z). As before, we may express the fie
components as

Bx5 (
m,n50

`

(
l 50

m
~21!mx2ny2m11

~2n!! ~2m11!! S m

l D b2n12m1122l
[2 l ] ,

By5 (
m,n50

`

(
l 50

m
~21!mx2n11y2m

~2n11!! ~2m!! S m

l D b2n12m1122l
[2 l ] ,

Bz5 (
m,n50

`

(
l 50

m
~21!mx2n11y2m11

~2n11!! ~2m11!! S m

l D b2n12m1122l
[2 l 11] .

~41!

The field expansion can be written as

Bx5yFb12
1

12
~3x21y2!b1

[2] G1O~5!,

By5xFb12
1

12
~3y21x2!b1

[2] G1O~5!,

Bz5xyb1
[1]1O~4!, ~42!

whereb1(z) is the transverse field gradient at the quadrup
axis, andO(4),O(5) contain all the higher-order terms. Fo
a particle traversing the magnet with a horizontal deviatiox
and vertical deviationy from the center, the momentum in
crements produced by the nominal field gradients are

nt
2-7
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TABLE I. Parameters associated with the LHC and SNS magnets, whose fringe-field figure of m
evaluated in Fig. 2. When two numbers occur, they are associated to the minimum and maximum va

Magnet Number Leff (m) bx,y (m) bx,y (m) uax,yu (m) ex,y (m rad)

LHC quadrupole triplets 16 5.5–6.37 1055–4463 1157–4401 1.1–203.9 5.03310210

LHC arc quadrupoles 368 3.1 32–178 32–176 0.5–2.4 7.8231029

LHC dipoles 1104 14.3 28–176 40–143 0.5–2.6 7.8231029

SNS dipoles 32 1.5 4–8 6 1.1–1.9 4.831024

SNS quadrupoles 52 0.5–0.7 2–28 2–26 0–8 4.831024
-
ic
ti

er

re

rse
rse

ole
on
Dpx
b52eb1xLeff , Dpy

b5eb1yLeff , ~43!

whereLeff5*bodyb1dz/b1 is the effective length of the quad
rupole magnet. The momentum increments of the part
contributed from the longitudinal component of the magne
field are

Dpx
f ~ i !'exyy8b1, Dpy

f ~ i !'2exyx8b1, ~44!

and the momentum increment produced by the transv
component of the fringe fields are

Dpx
f ~' !'

2eb1

4
@2xyy81~x21y2!x8#,

Dpy
f ~' !'

eb1

4
@2xx8y1~x21y2!y8#. ~45!

Combining the contributions, the total momentum inc
ments due to fringe field are

Dpx
f '

eb1

4
@2xyy82~x21y2!x8#,
a

ex
g-
ro

led
ur
h

04650
le
c

se

-

Dpy
f '

eb1

4
@22xx8y1~x21y2!y8#. ~46!

Again, by averaging the sum of squares of the transve
momenta contribution, we obtain the total rms transve
momentum kick imparted by the fringe field:

~Dp'
f !rms'

eb1

16 H ~115ax
2!bxex

31
3

by
@~11ay

2!bx
2

28axaybxby12~113ax
2!by

2#ex
2ey

1~115ay
2!byey

31
3

bx
@~11ax

2!by
2

28axaybxby12~113ay
2!bx

2#exey
2J 1/2

~47!

Note that the expected rotation symmetry of the quadrup
is exhibited both in this formula and in the body deflecti
formula. The standard ratio is
~Dp'
f !rms

~Dp'
b !rms

'
1

8Leff
H ~115ax

2!bx
2byex

313bx@~11ay
2!bx

228axaybxby12~113ax
2!by

2#ex
2ey

2bxby~bxex1byey!

1
~115ay

2!bxby
2ey

313by@~11ax
2!by

228axaybxby12~113ay
2!bx

2#exey
2

2bxby~bxex1byey!
J 1/2

. ~48!
ing

of
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Again dropping factors near 1, this leads to the same b
park estimates of Eqs.~31! and ~32!.

E. Magnets of LHC and SNS

The LHC and the SNS accumulator ring are good
amples for testing the validity of the derived fringe-field fi
ure of merit formulas. Indeed, the purpose of these two p
ton machines and, thereby, their magnet design differs
great extent: the LHC, a high-energy hadron collider, is fil
with long superconducting magnets of very small apert
~around 1 cm!. In contrast, the SNS ring, a low-energy hig
ll-

-

-
in

e

intensity accumulator, contains short normal conduct
magnets with wide aperture~tens of cm!. In addition, the
lattice design, optics functions, and physical parameters
the two machines are substantially different, e.g., the em
tance of the SNS beam is several orders of magnitude big
than the one of the LHC. In Table I, we summarize the p
rameters of the main magnets in the two accelerators en
ing in the figure of merit formulas~40! and ~48!.

In Fig. 2, we plot in logarithmic scale the fringe-fiel
figure of merit estimates for the LHC and the SNS accum
lator ring magnets. The dark blue bars represent evalua
with the exact formulas derived for dipoles and quadrupo
2-8
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FIG. 2. ~Color online only! Fringe-field figure
of merit estimates for the LHC and the SNS a
cumulator ring magnets. The two different bars
each case represent evaluation with the exact
mulas derived for the fringe-field figure of mer
of Eqs. ~40! and ~48! ~dark blue bars! and the
approximate formula for round beams~31! ~light
blue bars!.
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@see Eqs.~40! and~48!# and the light blue bars represent th
evaluation with the formula for round beams~31!. In both
cases, the total effect for each magnet is computed by s
ming up the fringe-field figures of merit from both ends d
to all the magnets of the same type. The fringe-field imp
tance in the case of the SNS is striking, especially for qu
rupole magnets, whereas in the case of the LHC can be c
pletely neglected. Note that similar results can be derived
careful dynamical analysis and computation of tune-sh
due to fringe fields or dynamic aperture analysis for both
LHC @9# and the SNS@10#. It is important to stress that eve
the approximate formula for round beams~31! is slightly
pessimisitic and within a factor of 2 of the exact figure
merit.

V. CONCLUSION

We have derived formulas for the momentum kicks i
parted by the fringe fields of general straight~nonsolenoidal!
multipole magnets. These formulas are based on an ex
sion having arbitrary dependence on the longitudinal coo
nate. This expansion can be used for direct integration of
equations of motion for particle tracking or other analytic
nonlinear dynamics estimates. It also permits the fringe p
and the body part of individual magnets to be identified a
separated. A figure of merit, the ratio of rms end deflection
rms body deflection is introduced and evaluated. Its prop
tionality to the transverse emittance results in an eas
evaluated measure of the importance of fringe fields both
cases in which the variation of optical functions is not t
rapid and in the opposite case of rapid variation. These
sults are in agreement with previous crude estimations wh
employed simple physics arguments based on Maxwell l
@11#. Finally, the formalism has been applied to the m
common cases of multipole magnets, namely, normal dip
and quadrupoles@12#. Since the straight-line approximatio
has been used throughout, these formulas are only precis
magnetic fields that are well approximated by step functi
~the hard-edge approximation!. Thus, the formulas contain
no parameters associated with the fringe shape~for example,
see Refs.@13,14#!. Also, as stated previously, only thos
fringe fields matching, and, therefore, required by, the no
nal body multipolarity are accounted for.

Numerical evaluation of the end-over-body figure of me
04650
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shows that fringe fields can be neglected in the magn
populating the arcs of large colliders, such as the LHC.
these rings, the magnets are long enough and the emitta
are so small~of the order of 1029 m rad) that the effect of
fringe fields is a tiny perturbation as compared to the do
nant multipole errors in the body of the magnets. The eff
may be important, however, in small rings, as the SNS ac
mulator ring@10# or the muon collider ring@15#, where the
emittance is large~typically 1024 m rad) and the magnet
much shorter. Careful consideration should be also take
the case of the magnets located in the interaction region
the collider@16#, where theb variation is quite big.

It is perhaps appropriate to call attention to possi
‘‘overly optimistic’’ use of the scaling law. Often, quadru
poles are grouped in doublets or triplets, in which the desi
focal properties rely on the intentional, highly tuned, ne
cancellation of deflections caused by more than one elem
In such cases, the fringe deflections are, of course, ampl
when evaluated relative to the gross multiplet deflecti
This effect is most obvious at focal points.

Since the early analytical studies of Lee-Whiting@17# and
Forest@4,6#, significant progress has been achieved for
construction of accurate maps that represent the motion
particles through the magnet fringe field, using either dir
numerical evaluation with exact integration of the magne
field @18,19# or parameter fit of an adequate function@20–22#
~e.g., the Enge function@23#!. These maps are essential f
the study of nonlinearities introduced by fringe field
through Hamiltonian perturbation theory techniques. On
other hand, the scaling law, we have emphasized, can
vide a rough estimate of the impact of these fringe fields i
ring. If the fringe fields are found to be important, a thorou
numerical modeling and analysis of their effect has to
undertaken, including computation of the amplitude dep
dent tune-shift, resonance excitation, and dynamic aper
@10,13,14,24–28#, as nonlinear dynamics can be very sen
tive to the details of different lattices and magnet desig
Furthermore, great care is required to preserve symplect
and use these maps in particle tracking.
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APPENDIX A: THREE-DIMENSIONAL MULTIPOLE
EXPANSION, CYLINDRICAL COORDINATES

The magnetic field representation in Cartesian coordin
(x,y,z) is not optimal for studying symmetries imposed
the cylindrical geometry of a perfect multipole magnet. F
this, it is preferable to rely on expansions in cylindrical c
ordinates (r ,u,z)5(Ax21y2,arctan(y/x),z) @4,6,18,29–32#.
Both expansions are equivalent and the use of the forme
the latter depends mostly on taste and the specific proble
be treated. First, consider the magnetic scalar potential, w
ten in the following form@4,6#:

F~r ,u,z!5ReH (
n50

`

ei (n11)u (
m50

`

Gn11,m~z!r mJ , ~A1!

where now thez-dependent coefficientsGn11,m(z) are gener-
ally complex. The above expansion follows directly from t
fact that the Laplacian commutes with]/] u @4#. This allows
the consideration of solutions where the dependence inu is
an harmonic 2(n11)-pole. This expansion is compatib
04650
s
n-

es

r
-

or
to
it-

with the general solution of the Laplace equation in cylind
cal coordinates, involving Bessel functions@18,33,34#.

Using Eq. ~A1! and the Laplace equation, one gets th
Gn11,050. Moreover,Gn11,1, should vanish forn.0 ~all
terms except the dipole!. Finally, we have a recursion rela
tion @4,32# similar to Eq.~4!:

Gn11,m12~z!5
G n11,m

[2] ~z!

~n11!22~m12!2
for mÞn21,

~A2!

where again the superscript in brackets denotes derivat
with respect toz. Following these relations, one can sho
that all coefficients withm,n11 vanish. Thus, the firs
nonzero coefficient isGn11,n11 ~for m5n11). By extend-
ing the recursion relation~A2! so as to express any coeffi
cient as a function ofGn11,n11, we get

Gn11,n1112k~z!5
~21!k~n11!!

22k~n111k!!k!
G n11,n11

[2k] ~z!.

~A3!

The summation indexes can be rearranged so as to exp
the magnetic scalar potential in cylindrical coordinat
@4,35#:
F~r ,u,z!5ReH (
n50

`

ei (n11)u(
k50

`
~21!k~n11!!

22k~n111k!!k!
G n11

[2k] ~z!r n1112kJ , ~A4!

and the three-dimensional field components are

Br~r ,u,z!5ReH (
n50

`

ei (n11)u(
k50

`
~21!k~n1112k!~n11!!

22k~n111k!!k!
G n11

[2k] ~z!r n12kJ ,

Bu~r ,u,z!52ImH (
n50

`

ei (n11)u(
k50

`
~21!k~n11!! ~n11!

22k~n111k!!k!
G n11

[2k] ~z!r n12kJ ,

Bz~r ,u,z!5ReH (
n50

`

ei (n11)u(
k50

`
~21!k~n11!!

22k~n111k!!k!
G n11

[2k11]~z!r n1112kJ . ~A5!

The coefficientsGn11[Gn11,n11 can be related with the usual multipole coefficients, through Eqs.~6!. First, we write the
scalar magnetic potential in Cartesian coordinates,

F~x,y,z!5ReH (
n50

`

(
k50

`
~21!k~n11!!

22k~n111k!!k!
G n11

[2k] ~z!~x1 iy !n11~x21y2!2kJ . ~A6!

The magnetic-field components are computed by the gradient of the potential~A6!,

Bx~x,y,z!5ReH (
n,k50

`
~21!k~n11!!

22k~n111k!!k!
~x21y2!k21~x1 iy !n11@~n1112k!x2 i ~n11!y#G n11

[2k] ~z!J ,

By~x,y,z!5ImH (
n,k50

`
~21!k~n11!!

22k~n111k!!k!
~x21y2!k21~x1 iy !n11@2~n11!x1 i ~n1112k!y#G n11

[2k] ~z!J ,
2-10



, the
,

DEFLECTIONS IN MAGNET FRINGE FIELDS PHYSICAL REVIEW E67, 046502 ~2003!
Bz~x,y,z!5ReH (
n,k50

`
~21!k~n11!!

22k~n111k!!k!
~x1 iy !n11~x21y2!2kG n11

[2k11]~z!J . ~A7!

Using Eqs.~6!, we get

bn~z!52~n11!!Im$Gn11~z!%2n! (
k51

n/2
~21!k~n1122k!~n1122k!!

22k~n111k!!k!
Im$G n1122k

[2k] ~z!%,

an~z!5~n11!!Re$Gn11~z!%1n! (
k51

n/2
~21!k~n1124k!~n1122k!!

22k~n111k!!k!
Re$G n1122k

[2k] ~z!%, ~A8!

where the upper limit of both series is the integer part ofn/2. Thus, in the absence of longitudinal dependence of the field
normal and skew multipole coefficients are just scalar multiples of the imaginary and real part ofGn11(z). On the other hand
the situation is more complicated in the case of three-dimensional fields. By inverting the series~A8!, we have

Im$Gn11~z!%52
1

n! (
k50

n/2

R n,k
norbn22k

[2k] ~z!,

Re$Gn11~z!%5
1

n! (
k50

n/2

R n,k
sk an22k

[2k] ~z!, ~A9!

where the coefficientsR n,k
sk andR n,k

nor can be computed order by order by thej 11 relations

R n,0
nor5

1

~n11!
, (

k50

j
~21!k~n1122k!~n1122k!!

22k~n111k!!k!
R n22k, j 2k

nor 50;

R n,0
sk 5

1

~n11!
, (

k50

j
~21!k~n1124k!~n1122k!!

22k~n111k!!k!
R n22k, j 2k

sk 50; ~A10!
b
nt
o
io

gn

the

An
the
t
then
and j runs from 1 to the integer part ofn/2. Using the last
relations, the scalar potential and the magnetic field can
expressed as a function of the usual multipole coefficie
By expanding the complex polynomials in the expression
the magnetic field components, one recovers the expans
of the magnetic fields~9! in Cartesian coordinates.

APPENDIX B: EVALUATION OF rms END DEFLECTIONS

In order to evaluate the rms deflection caused by a ma
end, we start from the expressions~21! by splitting the prod-
uct inside the brackets,

Dpx
f '2

ebn

4~n11!!
†Re$~x1 iy !n%@~n11!xx81~n21!yy8#

1Im$~x1 iy !n%@2~n13!xy81~n11!x8y!] ‡,

Dpy
f '

ebn

4~n11!!
†Re$~x1 iy !n%@~n11!xy82~n13!x8y#

1Im$~x1 iy !n%@~n21!xx81~n11!yy8!] ‡. ~B1!
04650
e
s.
f
ns

et

The total rms transverse momentum kick imparted by
fringe field is (Dp'

f ) rms5A^(Dpx
f )2&1^(Dpy

f )2&, where the
operator̂ •& denotes the average over the angle variables.
equivalent expression stands for the deflection due to
body part of the field. Thê•& operator is linear, we can firs
compute the sum of squares of the momentum kicks and
proceed to their averaging. Thus, we have

~Dp'
f !rms'

ebn

4~n11!!
@^ f 1„Re$~x1 iy !n%…2

1 f 2„Im$~x1 iy !n%…2

12 f 3Re$~x1 iy !n%Im$~x1 iy !n%&#1/2,

~Dp'
b !rms'

ebnLeff

n!
@^„Re$~x1 iy !n%…2

1„Im$~x1 iy !n%…2&#1/2, ~B2!

where f 1 , f 2, and f 3 are
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f 15~n11!2x2~x821y82!1y2@~n13!2x821~n21!2y82#

28~n11!xx8yy8,

f 25x2@~n21!2x821~n13!2y82#1~n11!2y2~x821y82!

28~n11!xx8yy8,

f 354@2~n11!~x21y2!x8y81xy~x821y82!#. ~B3!

We have the following relations for the real and imagina
part of (x1 iy)n:

Re$~x1 iy !n%5(
l 50

n/2

~21! l S n

2l D xn22l y2l ,

Im$~x1 iy !n%5 (
l 50

(n21)/2

~21! l S n

2l 11D xn22l 21y2l 11.

~B4!

and thus,

„Re$~x1 iy !n%…25
1

2
@~x21y2!n1Re$~x1 iy !2n%#

5
1

2 (
l 50

n F S n

l D 1~21! l S 2n

2l D Gx2n22l y2l ,

„Im$~x1 iy !n%…25
1

2
@~x21y2!n2Re$~x1 iy !2n%#

5
1

2 (
l 50

n F S n

l D 2~21! l S 2n

2l D Gx2n22l y2l ,

Re$~x1 iy !n%Im$~x1 iy !n%

5
1

2
Im$~x1 iy !2n%

5
1

2 (
l 50

n

~21! l S 2n

2l 11D x2n22l 21y2l 11, ~B5!

where the upper limit of the last sum is taken to bel 5n for
uniformity in the equations, instead of the last nonzero te
for which l 5n21. Finally, it is straightforward to show tha

„Re$~x1 iy !n%…21„Im$~x1 iy !n%…25~x21y2!n

5(
l 50

n S n

l D x2n22l y2l . ~B6!
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After expanding the products in Eq.~B2! and collecting the
terms of equal power in the transverse variables, we h
that the transverse kicks can be written in the followi
form:

~Dp'
f !rms'

ebn

4~n11!! F(l 50

n

~V11V21V3

1V41V51V6!G1/2

,

~Dp'
b !rms'

ebnLeff

n! F(
l 50

n S n

l D ^x2n22l&^y2l&G1/2

, ~B7!

where theVk’s are

V15@v1~n,l !1v2~n,l !#^x2n22l 12x82&^y2l&,

V25@v3~n,l !1v4~n,l !#^x2n22lx82&^y2l 12&,

V35@v3~n,l !1v5~n,l !#^x2n22l 12&^y2l y82&,

V45@v1~n,l !1v6~n,l !#^x2n22l&^y2l 12y82&,

V55v7~n,l !^x2n22l 21x8&^y2l 13y8&,

V65@v7~n,l !1v8~n,l !#^x2n22l 11x8&^y2l 11y8&,
~B8!

with the coefficientsvk’s

v1~n,l !5~n211!S n

l D , v2~n,l !52n~21! l S 2n

2l D ,

v3~n,l !5~n214n15!S n

l D ,

v4~n,l !5
2~5n12ln12!~21! l

2l 11 S 2n

2l D ,

v5~n,l !522~n12!~21! l S 2n

2l D ,

v6~n,l !5
22l ~2n11!~21! l

2l 11 S 2n

2l D ,

v7~n,l !5
28~n11!~n2 l !~21! l

2l 11 S 2n

2l D ,

v8~n,l !528~n11!S n

l D . ~B9!
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In order to proceed to the averaging of the transverse v
ables, we write them in the standard form

$x,y%5Aex,ybx,yCx,y , $x8,y8%5Aex,y

bx,y
~Sx,y1ax,yCx,y!,

~B10!

whereex,y are the transverse emittances associated with
corresponding phase space dimension;bx,y , ax,y are the
usualb, anda functions; andCq ,Sq stand for cosfq ,sinfq ,
respectively. Using the above relations and averaging o
the angle variablesfq , one can show that
04650
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^q2m&5S 2m

m Dbq
meq

m

22m
,

^q2mq82&5S 2m

m D @11~2m11!aq
2#bq

m21eq
m11

22m11~m11!
,

^q2m11q8&5S 2~m11!

m11 Daqbq
meq

m11

22m12
. ~B11!

Then, theVk’s become
V15@v1~n,l !1v2~n,l !#S 2~n2 l !

n2 l D S 2l

l D ~2n22l 11!@11~2n22l 13!ax
2#bx

n2 lby
l ex

n2 l 12ey
l

22n12~n2 l 11!~n2 l 12!
,

V25@v3~n,l !1v4~n,l !#S 2~n2 l !

n2 l D S 2l

l D ~2l 11!@11~2n22l 11!ax
2#bx

n2 l 21by
l 11ex

n2 l 11ey
l 11

22n12~n2 l 11!~ l 11!
,

V35@v3~n,l !1v5~n,l !#S 2~n2 l !

n2 l D S 2l

l D ~2n22l 11!@11~2l 11!ay
2#bx

n2 l 11by
l 21ex

n2 l 11ey
l 11

22n12~n2 l 11!~ l 11!
,

V45@v1~n,l !1v6~n,l !#S 2~n2 l !

n2 l D S 2l

l D ~2l 11!@11~2l 13!ay
2#bx

n2 lby
l ex

n2 ley
l 12

22n12~ l 11!~ l 12!
,

V55v7~n,l !S 2~n2 l !

n2 l D S 2l

l D ~2l 11!~2l 13!axaybx
n2 l 21by

l 11ex
n2 ley

l 12

22n12~ l 11!~ l 12!
,

V65@v7~n,l !1v8~n,l !#S 2~n2 l !

n2 l D S 2l

l D ~2n22l 11!~2l 11!axaybx
n2 lby

l ex
n2 l 11ey

l 11

22n12~n2 l 11!~ l 11!
. ~B12!

After collecting terms of equal emittances, the rms transverse momentum kicks can be expressed as

~Dp'
f !rms'

ebn

2n13~n11!!
F(

l 50

n S 2~n2 l !

n2 l D S 2l

l D
3bx

n2 lby
l ex

n2 ley
l (
m50

2

gn,l ,m~ax,y ,bx,y!ex
mey

22mG1/2

,

~Dp'
b !rms'

ebnLeff

2nn!
F(

l 50

n S n

l D S 2~n2 l !

n2 l D S 2l

l Dbx
n2 lby

l ex
n2 ley

l G1/2

, ~B13!

where the bars on theb ’s denote their average values over the body of the magnet. The coefficientsgn,l ,m , given by

gn,l ,0~ax,y ,bx,y!5

F ~n211!~2l 11!S n

l D 22l ~2n11!~21! l S 2n

2l D G @11~2l 13!ay
2#

~ l 11!~ l 12!

2

8~n11!~n2 l !~2l 13!~21! l S 2n

2l Daxayby

bx~ l 11!~ l 12!
,
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gn,l ,1~ax,y ,bx,y!5

F ~n214n15!~2l 11!S n

l D 12~5n12ln12!~21! l S 2n

2l D G @11~2n22l 11!ax
2#by

bx~n2 l 11!~ l 11!

1

F ~n214n15!S n

l D 22~n12!~21! l S 2n

2l D G~2n22l 11!@11~2l 11!ay
2#bx

by~n2 l 11!~ l 11!

2

8~n11!F ~2l 11!S n

l D 1~n2 l !~21! l S 2n

2l D G~2n22l 11!axay

~n2 l 11!~ l 11!
,

gn,l ,2~ax,y ,bx,y!5

F ~n211!S n

l D 12n~21! l S 2n

2l D G~2n22l 11!@11~2n22l 13!ax
2#

~n2 l 11!~n2 l 12!
, ~B14!
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depend on the twiss functionsax,y , bx,y and on the multi-
pole ordern. One may note that the rms transverse mom
tum kick of the fringe is represented by the square root o
polynomial of ordern12 in the transverse emittancesex and
ey as compared to the square root of a polynomial of orden
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representing the body contribution~see also Ref.@4#!. Thus,
their ratio should be proportional to the transverse emittan
This scaling law is indeed exact for the case of the dipole
quadrupole. For higher-order multipoles, it is exact for fl
and round beams~Sec. IV!.
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